Assignment Problem

This is a special type of LPP in which the objective function is to find the optimum allocation of a number of tasks (jobs) to an equal number of facilities (persons). Here we make the assumption that each person can perform each job but with varying degree of efficiency. For example, a departmental head may have 4 persons available for assignment and 4 jobs to fill. Then his interest is to find the best assignment which will be in the best interest of the department.

General formof an Assignment Problem:

The assignment problem can be stated in the form of $n \times n$, matrix $\left[c_{i j}\right]$ called the cost of effectiveness matrix, where c_{ij} is the cost of assigning $\mathrm{i}^{\text {th }}$ person (facility) to $\mathrm{j}^{\text {th }}$ job.

Effectiveness Matrix:

Jobs
132

A person can be assigned to n jobs in n ! Possible ways. O ne method may be to find all possible n ! assignments and evaluate total cost in all cases. Then the assignment with minimum cost (as required) will give the optimal assignment. But this method is extremely laborious. For example if $\mathrm{n}=8$, then the number of such possible assignments is $8!=40320$. The evaluation cost for all these allocation will take huge time. Therefore there is a need to develop an easy computational technique for the solution of assignment problem.

Mathematical Formulation:

M athematical formulation of an assignment problem can be stated as follows:
$Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}$
W here $x_{i j}=\left\{\begin{array}{l}1, \text { if ith person is assigned to the } j^{j \text { th }} j \text { job. } \\ 0, \text { if ith person is not assigned the } j^{\text {th }} \text { job. }\end{array}\right.$
Subject to the conditions:
$\sum_{i=1}^{n} x_{i j}=1, j=1,2, \ldots \ldots . . \quad n$.
W hich means that only one job is done by the $i^{\text {th }}$ person, $i=1,2, \ldots \ldots, n$.
$\sum_{j=1}^{n} x_{i j}=1, i=1,2, \ldots \ldots ., \quad n$.
W hich means that only one person should be assigned the $j^{\text {th }} j 0 b, j=1,2, \ldots . . ., n$.

Reduction Theorem:

If in an assignment problem, a constant is added or subtracted to every element of a row (or column) of the cost matrix [c_{ij}], then an assignment which minimizes the total cost for one matrix, also minimizes the total cost for the other matrix.

Solution of an Assignment Problem:

(Hungarian Methodor Reduced Matrix Method) 1.Solvethe following minimal assignment problem:

Man				
Job \downarrow	1	2	3	4
1	12 30 21 15 2 18 33 9 31 3 25 24 21 4 30 28 14			

Step 1: Select the minimumof each row and subtract fromall the el ements of corresponding row.

0	18	9	3
9	24	0	22
23	4	3	0
9	16	14	0

Step 2: Select the minimumof each column and subtract fromall the el ements of corresponding column.

0	14	9	3
9	20	0	22
23	0	3	0
9	12	14	0

Step 3: Starting with row 1 of the matrix obtained in step 2. Examine rows successively until a row with exactly one zero element is found. Mark (\square) at this zero, as an assignment is made there. Mark (x) at all the other zeros in the column (in which we mark \square) to show that theycan not be used to make other assignments. Proceed in this way until thelastrow is examined.

$\boxed{0}$	14	9	3
9	20	$\boxed{ }$	22
23	0	3	X
9	12	14	$\boxed{0}$

Step 4: After examining all the rows completely. Proceed simil arly examining the columns. Examine column starting with column 1 until a column containing exactly one unmarked 0 is found. Mark (\square) at this zero. Mark (x) at all the other zeros in the rows (in which we mark \square). Proceed in this way until thelast column is examined.

$\boxed{0}$	14	9	3
9	20	0	22
23	$\boxed{0}$	3	\times
9	12	14	$\boxed{0}$

Step 5. Continue the these operations until successively until we reach to anyof the two situations:
a. All the zero's are marked \square or x.
b. Theremaining unmarked zeros lies atteast two in a row or a column.
In case (A) we have the maximal assignment (assignment as much as we can) and in case (b) still we have somezeros to betreated for which we use the trail and error method to avoid the use of highly compl ic ated al gor ithm.

Now there aretwo possibilities:
a. If it has an assignment in each row and each column (i.e. The total number of marked \square zero is exactly equal to n), then the completeoptimal solution is obtained.

Since every row and every column has one assignment, so we have the complete optimal zero assignment.

J O B	1	2	3	4
MAN	1	3	2	4

Which is theoptimal assignment.
b. If it does not contain assignment in every row and every column (i.e. The total number of marked \square zeros is less than n), then one has to modify the cost (effectiveness) matrix by adding or subtracting to create some morezeros to it.
2. A department head has 4 subordinates, and 4 tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. His estimate of the times each man would taketo performeach task is given in the effectiveness matrix below. How should the tasks to be allocated, one to a man, so as to minimizethetotal man hour?

Man				
Job \downarrow	1	2	3	4
1	2	3	4	5
2	5	6	7	
3	8	9	8	
7	5	8	4	

Since every row and every column has one assignment, so we have the complete optimal zero assignment.

J O B	1	2	3	4
MAN	2	3	4	1

Which is the optimal assignment.
2. Solvethefollowing assignment problem?

1. We mark $(\sqrt{ })$ row 3 in which there is no assignment.

\nsim	13	49	$\boxed{0}$	$风$	13
\times	35	29	5	10	$\boxed{0}$
13	\times	63	7	7	\times
47	15	$\boxed{0}$	20	2	\times
25	$\boxed{0}$	46	9	4	2
0	53	50	26	4	20

2. We mark $(\sqrt{ })$ columns 2 and 6 in which have zeros in markedrows.

*	13	49	0	χ	13	
*	35	29	5	10	0	
13	*	63	7	7	*	$\sqrt{ } 1$
47	15	0	20	2	*	
25	0	46	9	4	2	
0	53	50	26	4	20	
					3	19

3. We mark $(\sqrt{ })$ rows 5 and 2 which have assignments in marked columns.

4. We mark $(\sqrt{ })$ column 1 (not already marked) which has 0 in the marked row 2 .

X	13	49	0	X	13
*	35	29	5	10	0
13	又	63	7	7	*
47	15	0	20	2	x
25	0	46	9	4	2
0	53	50	26	4	20
$\sqrt{\sqrt{2}}$	2				3

5. Now we draw lines through all marked columns 1, 2, 6. Then we draw l ines through unmarked row 1 and 4 having zeros through which there is no line. In this way we get the minimumnumber of lines covering all zeros.

6. Now select minimum of the left out el ements. Subtract it fromtheleft out el ements, add at the intersection of I ines. Whilethe el ements lying on thelines will remain as theywere.

4	17	49	$\boxed{0}$	x	17
0	35	25	1	6	x
13	x	59	3	3	$\boxed{0}$
51	19	$\boxed{0}$	20	2	4
25	$\boxed{0}$	42	5	x	2
\times	53	46	22	$\boxed{0}$	20

Solutionto the assignment problem is given by:

Job	a	b	c	d	e	f
Man	4	1	6	3	2	5

2. Solvethefollowing assignment problem?

Man					
Job					
A					
A	1	2	3	4	5
B	1	3	2	3	6
C	2	4	3	1	5
D	6	6	3	4	6
E	1	4	2	2	
1	5	6	5	4	

Case: An air - line that oper ates seven days a week has time table shown below. Cruse must have a minimum layover of 5 hours between flights. O btain the pair ing of flights that minimizes I ayover time away fromhome. For any given pair ing thecrew will be based at the citythat results in the smaller layover.

Delhi-J aipur			Jaipur-Delhi		
FligthNo	Departure	Arrival	FlightNo	Departure	Arrival
1	7.00 am	8.00 am	101	8.00 am	9.15 am
2	8.00 am	9.00 am	102	8.30 am	9.45 am
3	1.30 pm	2.30 pm	103	12.00 noon	1.15 pm
4	6.30 pm	7.30 pm	104	5.30 pm	6.45 pm

For each pair also mention the town where the crew should be based.

Solution:
Layover time in hours when crew based at del hi.

FI ight	101	102	103	104
1	24	24.5	28	9.5
2	23	23.5	27	8.5
3	17.5	18	21.5	27
4	12.5	13	16.5	22

Layover time in hours when crew based at Jaipur.

FI ight	101	102	103	104
1	21.75	21.25	17.75	12.25
2	22.75	22.25	18.75	13.25
3	28.25	27.75	24.25	18.75
4	9.25	8.75	5.25	23.75

To avoid the fractions weconsider either thelayover times in terms of quarter hour as one unit of time or the layover times for 4 weeks. Thus multiplying the matrices by 4 , the modif ied matrices are as follows:

FI ight	101	102	103	104
1	96	98	112	38
2	92	94	108	34
3	70	72	86	108
4	50	52	66	88

And

FI ight	101	102	103	104
1	87	85	71	49
2	91	89	75	53
3	113	111	97	75
4	37	35	21	95

Now we combine the two tables, choosing that base which gives a lesser layover time for each pair ing. The layover times marked with (*) denote the crew based at Jaipur, otherwise the crew is based at Delhi. Thus we get the following table.

Table 6. (Minimum Layover times table)

$87 *$	85^{*}	$71 *$	38
91^{*}	$89 *$	$75 *$	34
70	72	86	$75 *$
$37 *$	35^{*}	$88 *$	

Subtracting the smallest element of each row fromevery element of the corresponding row and then subtracting the smallest el ement of each column fromevery el ement of the corresponding column, we get the following matrix.

Table 7.

49*	45*	33*	0	$\checkmark 3$
57*	53*	41*	*	1
0	\%	16	5*	L_{1}
16*	12*	0*	67	L_{2}
			$\overbrace{2}^{\sqrt{ }}$	30

Applying the modif ic ation oper ations and making assignments again weget the following table.

Applying the modif ic ation oper ations and making assignments again weget the following table.

Table 9.

4^{*}	$\boxed{0 *}$	$\mathbb{*}^{*}$	\mathbb{X}
12^{*}	8^{*}	8^{*}	$\boxed{0}$
0			
4^{*}	x^{*}	28	$50 *$
	$\boxed{0 *}$	100	

Theoptimal solution to the problemis given by following

The minimum layover time is 210 hours for 4 weeks i.e. 52 hours and 30 minutes per week.

Case: A small air - plane company oper at ing 7 days a week, serves three cities A, B and C according to the schedule shown in the following table. The layover cost per shop is roughly proportional to the square of the layover time. How should planes be assigned theflights so as to minimizethetotal layover cost?

Flight No .	From	Departure	To	Arrival
A 1 B	A	09.00 AM	B	Noon
A 2 B	A	10.00 AM	B	01.00 PM
A 3 B	A	03.00 PM	B	06.00 PM
A 4 C	A	08.00 PM	C	Midnight
A 5 C	A	10.00 PM	C	02.00 AM
B 1 A	B	04.00 AM	A	07.00 AM
B 2 A	B	11.00 AM	A	02.00 PM
B 3 A	B	03.00 PM	A	06.00 PM
C1A	C	07.00 AM	A	11.00 AM
C 2 A	C	03.00 PM	A	07.00 PM

Unbalanced Transportation Problem:

As assignment problems is called unbalanced assignment problem whenever the number of tasks (jobs) are not equal to the number of facilities (persons). Thus, the cost of matrix of an assignment problem is not the square matrix. For the solution of such problems we ass the dummy rows and dummy columns to the given matrix to make it a square matrix. The costs in these dummy rows or columns are taken to be 0 . Now the problem reduce to the balanced assignment problem and can be solved by assignment algorithm.

Maximization Problem:

Sometimes the assignment problem deals with the maximization of the objective function i.e., the problem may be to assign persons to the jobs in such a way that the expected profit is maximized. Such maximization problem may be solved by converting it to minimization problem. This is done converting the profit matrix to the cost (i.e. loss) matrix in either of the following two ways.
(i) Subtract each element of the given matrix (profit matrix) from the greatest element of the matrix to get the equivalent cost (i.e. loss) matrix.
or
(ii) Place minus sign before each element of the profit matrix to get the equivalent cost matrix.

C ase: Alpha corporation has four plants each of which can manufacture any of the four products. Production costs differ from plant to plant as do sales revenue. From the following data, obtain which product each plant should produce to maximize profit.

Sales revenue (Rs 1000)

$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \frac{\pi}{\pi} \\ & \hline \mathbf{a} \end{aligned}$		Product			
		A	B	C	D
	1	50	68	49	62
	2	60	70	51	74
Q	3	55	67	53	70
	4	58	65	54	69

Production cost (Rs 1000)

$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\pi}{\pi} \\ & \hline \mathbf{a} \end{aligned}$		Product			
		A	B	C	D
	1	49	60	45	61
	2	55	63	45	69
	3	52	62	49	68
	4	55	64	48	66

